Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max)
نویسندگان
چکیده
Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be necessary to reveal their potential to enhance flooding tolerance of soybean cultivars.
منابع مشابه
The Effect of floodingand nutrition levels on reproductive growth stages of aerenchyma formation and ethylene production in soybean (Glycine max L)
To survey the effects of flooding during the reproductive growth stages of aerenchyma formation and ethylene production in soybean cultivar DPX experiment the completely randomized factorial was in 2012 in Gorgan University of Agricultural Sciences and Natural Resources. Factors examined include nutrition levels in three levels (1 - inoculated with bacteria JaponicumBradyRhizobium 2 - non-inoc...
متن کاملIdentification of Novel QTL Governing Root Architectural Traits in an Interspecific Soybean Population
Cultivated soybean (Glycine max L.) cv. Dunbar (PI 552538) and wild G. soja (PI 326582A) exhibited significant differences in root architecture and root-related traits. In this study, phenotypic variability for root traits among 251 BC2F5 backcross inbred lines (BILs) developed from the cross Dunbar/PI 326582A were identified. The root systems of the parents and BILs were evaluated in controlle...
متن کاملThe Effect of floodingand nutrition levels on reproductive growth stages of aerenchyma formation and ethylene production in soybean (Glycine max L)
To survey the effects of flooding during the reproductive growth stages of aerenchyma formation and ethylene production in soybean cultivar DPX experiment the completely randomized factorial was in 2012 in Gorgan University of Agricultural Sciences and Natural Resources. Factors examined include nutrition levels in three levels (1 - inoculated with bacteria JaponicumBradyRhizobium 2 - non-inoc...
متن کاملIdentification of SNPs in RNA-seq data of two cultivars of Glycine max (soybean) differing in drought resistance
The legume Glycine max (soybean) plays an important economic role in the international commodities market, with a world production of almost 260 million tons for the 2009/2010 harvest. The increase in drought events in the last decade has caused production losses in recent harvests. This fact compels us to understand the drought tolerance mechanisms in soybean, taking into account its variabili...
متن کاملImpact of sea salt stress on growth and some physiological attributes of some soybean (Glycine Max L.) varieties.
The impact of three levels of sea salt (0.0, 8.0, and 16.0 mS/cm2) on six varieties of soybean (Crawford, G21, G22, G35, G82, and G83) was studied. Growth criteria, photosynthetic pigments, soluble sugars, soluble protein, free amino acids, free proline, and protein profile of soybean varieties were investigated under sea salt stress. Results of this study showed a considerable decrease in grow...
متن کامل